Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations.
نویسندگان
چکیده
Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a brownian dynamics simulation. However, the calculation of correlated brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N(2)) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the "block" version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10,000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale brownian dynamics simulations with hydrodynamic interactions.
منابع مشابه
Title: Krylov Subspace Methods for Computing Hydrodynamic Interactions in Brownian Dynamics Simulations
Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studie...
متن کاملRapid Sampling of Stochastic Displacements in Brownian Dynamics Simulations
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-PragerYamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurat...
متن کاملRapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, poly...
متن کاملAre hydrodynamic interactions important in the kinetics of hydrophobic collapse?
We study the kinetics of assembly of two plates of varying hydrophobicity, including cases where drying occurs and water strongly solvates the plate surfaces. The potential of mean force and molecular-scale hydrodynamics are computed from molecular dynamics simulations in explicit solvent as a function of particle separation. In agreement with our recent work on nanospheres [J. Phys. Chem. B 20...
متن کاملAn Investigation into Preconditioning Iterative Solvers for Hydrodynamic Problems
Two Krylov subspace iterative methods, GMRES and QMR, were studied in conjunction with several preconditioning techniques for solving the linear system raised from the finite element discretisation of incompressible Navier-Stokes equations for hydrodynamic problems. The preconditioning methods under investigation were the incomplete factorisation methods such as ILU(0) and MILU, the Stokes prec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 137 6 شماره
صفحات -
تاریخ انتشار 2012